
2428 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 4, AUGUST 2006

A VLSI Processor for Fast Track Finding Based on
Content Addressable Memories

A. Annovi, A. Bardi, M. Bitossi, S. Chiozzi, C. Damiani, M. Dell’Orso, P. Giannetti, P. Giovacchini,
G. Marchiori, I. Pedron, M. Piendibene, L. Sartori, F. Schifano, F. Spinella, S. Torre, and R. Tripiccione

Abstract—The authors describe a VLSI processor for pattern
recognition based on content addressable memory (CAM) archi-
tecture, optimized for on-line track finding in high-energy physics
experiments. A large CAM bank stores all trajectories of interest
and extracts the ones compatible with a given event. This task is
naturally parallelized by a CAM architecture able to output iden-
tified trajectories, searching for matches on 96-bit wide patterns,
in just a few 40-MHz clock cycles. We have developed this device
(called the AMchip03 processor) for the silicon vertex trigger
(SVT) upgrade at the Collider Detector experiment at Fermilab
(CDF) using a standard-cell VLSI design methodology. This
approach provides excellent pattern density, while sparing many
of the complexities and risks associated to a full-custom design.
The cost/performance ratio is better by well more than one order
of magnitude than an FPGA-based design. This processor has a
flexible and easily configurable structure that makes it suitable
for applications in other experimental environments. They look
forward to sharing this technology.

Index Terms—Parallel processing, particle tracking, pattern
matching, triggering, very large scale integration (VLSI).

I. INTRODUCTION

TRACK reconstruction in high energy physics experiments
requires large online computing power. A conceptually

very simple and effective approach to the problem, proposed
several years ago [1], can be applied to a large class of detectors,
e.g., typical vertex detectors, that can be conceived as segmented
in layers, each layer being in turn divided into a number of bins.
For each event a number of particle tracks traverse the detector.
Each track crosses one bin per layer, generating hits. Tracks are,
therefore, associated to specific strings of hits and misses (that
we code as 1 and 0s, respectively). All tracks of physical in-
terest correspond to bit patterns that are explicitly enumerated
and stored in an appropriate data bank. Track reconstruction in

Manuscript received November 10, 2005; revised March 18, 2006. This work
was supported by INFN.

A. Annovi and S. Torre are with INFN, Laboratori Nazionali di Frascati,
I-00044 Frascati, Rome, Italy.

M. Bitossi and M. Dell’Orso are with INFN Sezione di Pisa, 56127 Pisa, Italy.
They are also with Dipartimento di Fisica, Università di Pisa, 56127 Pisa, Italy.

A. Bardi, P. Giannetti, M. Piendibene, and F. Spinella are with INFN Sezione
di Pisa, 56127 Pisa, Italy (e-mail: paola.giannetti@pi.infn.it).

S. Chiozzi, C. Damiani, F. Schifano, and R. Tripiccione are with INFN
Sezione di Ferrara, 44100 Ferrara, Italy. They are also with Dipartimento di
Fisica, Universita’ di Ferrara, 44100 Ferrara, Italy.

P. Giovacchini is with STMicroelectronics Srl, 20041 Agrate, Milano, Italy.
G. Marchiori is with Atmel Roma s.r.l., 00155 Rome, Italy.
I. Pedron is with Dipartimento di Fisica, Universita’ di Ferrara, 44100 Ferrara,

Italy. He is also with Atmel Roma s.r.l., 00155 Rome, Italy.
L. Sartori is with INFN Sezione di Ferrara, 44100 Ferrara, Italy. He is also

with Dipartimento di Fisica, Universita’ di Ferrara, 44100 Ferrara, Italy. He is
also with STMicroelectronics Srl, 20041 Agrate, Milano, Italy.

Digital Object Identifier 10.1109/TNS.2006.876052

this approach amounts to retrieving from the data bank the string
(or strings) that match the current event, as measured in the de-
tector. This task can be performed with negligible time delay by
a content addressable memory (CAM), i.e., a device that com-
pares in parallel an input pattern set of hits with all stored pat-
terns and return the address(es) of the matching location(s).

A full-custom VLSI technology was used in this context to
produce the first CAM for the CDF experiment [2], where tracks
inside very high multiplicity events must be found in a time
span of a few microseconds. A fast online tracker for the CDF
silicon vertex trigger (SVT) [3] was built around the purposely
developed associative memory (AM) chip [4], and operated in
CDF since Run II started in the year 2000.

A critical figure of merit for a CAM-based track reconstruc-
tion system is the number of patterns that can be stored in the
data bank. In the past, the request to maximize available patterns
forced a full-custom VLSI approach, which implied a big de-
velopment effort and a difficult upgrade path to more recent and
denser microelectronic technologies, as they eventually become
available. In recent years, very high-density silicon technologies
make it possible to build a very large number of transistors in-
side a reasonably large silicon area (say, cm). It is there-
fore appropriate to reconsider the best tradeoff between pattern
density and ease of design (and eventually redesign). While the
full-custom approach obviously maximizes pattern density, an
FPGA-based design gives the fastest development time at the
cost of a drastically reduced pattern density. This option has
been considered in [5]. Despite the recent FPGA progress, these
devices are still not convenient for our application. Midway be-
tween the two approaches, a standard-cell based design brings
substantial advantages, as discussed in details later on.

In this paper, we describe the design and test of a new much
more powerful version of the AM chip, that we call the AM-
chip03 processor, now used for the upgrade of the SVT at CDF.
The AMchip03 uses a 0.18- m CMOS technology and a strictly
standard-cell based VLSI design approach.

The SVT processing time is a function of the detector oc-
cupancy and increases as the instantaneous luminosity rises.
The AM chip upgrade increases the number of patterns stored
in the chip from 128 to . A larger bank is available
to store higher resolution candidate tracks, drastically reducing
the number of found fakes and their processing time [6]. The
number of chips per board has not changed [7]. The advantages
and first results of this upgrade are described in detail [6].

II. AMCHIP03 ARCHITECTURE

The AMchip03 is a single chip digital VLSI processor per-
forming all functions needed for CAM-based fast track identifi-

0018-9499/$20.00 © 2006 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 12, 2008 at 19:22 from IEEE Xplore. Restrictions apply.

ANNOVI et al.: FAST TRACK FINDING BASED ON CAMs 2429

cation and reconstruction. It formats and compresses the results
and passes them to a daisy-chain of further AMchip03 com-
ponents and eventually to the downstream stages of the data
readout system.

As aforementioned, a large bank of precalculated patterns is
used to find tracks in a detector consisting of a number of layers,
each layer being segmented into a number of bins. For each
physical event a number of tracks traverse the detector. Each
track crosses one bin per layer, generating hits. The collection
of tracks creates a particular configuration of hits: we use the
word event when referring to the full set of hit bits. We know
which bins have been hit and from this information we want to
reconstruct the trajectories of all particles.

To this purpose we list offline all the relevant tracks that can
go through the detector. A pattern, consisting of one hit bin per
layer, corresponds to each possible track. All the different pat-
terns are stored in a sufficiently large memory with CAM capa-
bilities, that we call the pattern bank.

In principle, the pattern bank may contain all possible tracks
that go through the detector (a 100% efficient bank). In practice,
one should also consider effects which make particles deviate
from the ideal trajectory, such as detector resolution smearing,
multiple scattering, etc. Those effects generate a huge number
of extremely improbable patterns, which blow the bank size up.
For this reason, we decide to use a bank that is partially ineffi-
cient. We generate tracks in the detector and we convert tracks
into patterns. We store new patterns corresponding to the gen-
erated tracks, until the bank reaches the desired efficiency. This
procedure automatically ensures that high-probability patterns
are stored and low-probability patterns are left out.

The generated track typology also affects the bank size. It is
very convenient to restrict the range of the generated track pa-
rameters, such as PT and the region where they come from (lu-
minosity region), to those values relevant for the physical pro-
cesses to be studied.

At CDF, tracks are stored in the bank if their PT is larger
than 2 GeV and if pointing to a source region in the transverse
plane, few millimeters wide around the beam spot. This restric-
tion helps to keep the size of the pattern bank small, but reduces
to zero the efficiency for tracks coming from long lived parti-
cles. However, B-meson decay products, whose impact param-
eters are few hundred microns, are compatible with such a lu-
minosity region and pattern bank.

When the beam moves in the transverse plane more than 300
m, the pattern bank looses efficiency uniformity, thus, it is gen-

erated again, centering the new beam spot position. This hap-
pens roughly once a month.

A few details about the generation of the bank could be useful.
For CDF applications we use simulation to generate tracks in
the detector and then we convert them into patterns. The pattern
bank is always generated to take advantage of all the patterns
available in the hardware. The pattern recognition resolution,
i.e., geometrical size of the patterns, is tuned to get a reasonably
high pattern bank efficiency % using all patterns.

For each event one has to scan the pattern bank and compare
each pattern to the event. A track candidate is found whenever
all the hits in the pattern, or a majority of them, are present in
the event. The minimum number of layers that have to be hit for

a track to be found is a free parameter and is set in a control reg-
ister as a single programmable threshold common to all patterns
in the chip. Threshold comparison is introduced to account for
any inefficiency in the detectors. A typical configuration is five
layers out of six. The CAM technology, that allows performing
this search in just a few clock cycles, is obviously the key com-
ponent of the AMchip03 (in the following we will also loosely
refer to the CAM bank with the term “Associative Memory”).

It must be emphasized that with respect to commercially
available CAMs the AMchip03 has the unique ability to search
for correlations among input words received at different clock
cycles. This is essential for tracking applications since the input
words are the detector hits arriving from different layers. They
arrive at the chip, serialized on six buses, without any specific
timing correlation. Each pattern has to keep memory of each
fired layer (the layer-match flip flop described below) until
the pattern is matched or the event is fully processed and thus
patterns can be reset.

The AM allows comparing at the same time all the previously
stored patterns with the current event. The AMchip03 performs
pattern recognition in a detector of up to 6 layers. Each pattern
is therefore segmented into six 16 bit words, one for each de-
tector layer. Fig. 1 displays a block diagram of the complete de-
vice. The chip receives 6 buses (Bus0-5 on the left of the figure)
bringing hits from the detector, one bus for each layer. The buses
received by the chip are 18 bit wide, but the two most signifi-
cant data bits are matched with a mask once per chip and not
distributed to the patterns. The mask is downloaded in a control
register at initialization time. At each clock cycle the content
of each pattern word is compared in parallel with the content
of the corresponding bus and a flip-flop is set for each occur-
ring layer match. When the number of layer-matches for a cer-
tain pattern is above a given threshold, a pattern-match flip-flop
is set. Threshold comparison is introduced to account for any
inefficiency in the detectors. It is possible to require that one
specific layer has fired, in order to set the match flip-flop. The
pattern bank uses approximately 80% of the silicon resources in
the device and contains 5120 patterns, corresponding altogether
to approximately 500 000 content-addressable memory bits.

In addition to the default 6 layer mode, the chip can be con-
figured to perform pattern recognition for a detector of up to 12
layers, combining pairs of 6-word patterns into a 12–word pat-
tern. In this case, the eighteenth bit of each data bus is used to
distinguish hits coming from two layers, multiplexed on a single
bus.

The processor contains the logic functionalities needed to
interface with other sections of the readout system. The ad-
dresses identifying all matched pattern are read-out from the
chip through the Patt add out bus. Patterns are read-out one
after the other, giving priority to the highest address. When a
pattern is read-out, the “kill” logic resets the “pattern-match”
flip flop until the end of the event, so each matched pattern is
read-out once.

Several AMchip03 processors can be cascaded in daisy chain
to build a larger pattern bank. Multiple daisy chains can in turn
be multiplexed for even larger banks. Each AMchip03 outputs
its matched addresses on the Patt add out bus. Pattern addresses
can be received on the Patt add in bus by the following AM-

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 12, 2008 at 19:22 from IEEE Xplore. Restrictions apply.

2430 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 4, AUGUST 2006

Fig. 1. Block diagram of AMchip03. The pattern bank, the readout and the control logic are emphasized (see text for description). (Color version available online
at http://ieeexplore.ieee.org.)

chip03 in the pipeline, unless the chip is programmed to be the
first in the chain. These addresses are stored in a FIFO and mul-
tiplexed with local addresses on the only output, Patt add out.
The flux of addresses is controlled by a finite-state-machine
(Data Flux Control in the figure) that uses a simple protocol
based on four control signals, labeled as DA out, DA in SA out
and SA in in the figure.

The core of our architecture is similar to the old AM device,
previously used in CDF [4], but it has a much larger array
size. On the other hand, this design substantially improves
input-output capabilities, critical to reduce processing time.
A short processing time is an important asset, since it helps
to reduce the trigger dead-time. The time associated to actual
pattern matching is negligible once data is available inside the
chip, since the CAM array identifies a matching pattern in just
one clock cycle. Hence, total processing time is determined
essentially by the input bandwidth. In CDF, 12 independent
systems, each made of an array of 128 AMchip03, handle the
12 Silicon detector wedges of the experiment. Aproximately
300 hits (at the accelerator luminosity cm s) are
expected on average from the most busy wedge. Due to system
constraints, all hits are loaded into the chip over one bus (40
MHz rate) at a time, so input time is s. Processing is
already active as data is input to the processor, and matched
patterns are immediately offloaded, with the last pattern coming
out approximately six clock cycles (150 ns) after the last input
data is received. In a more demanding environment (we con-
sider a typical low luminosity situation at the Large Hadron
Collider at CERN), with hits in the whole detector,
we might expect hits going to one AMchip03 array
handling for instance th of the whole detector. Exploiting
the full input bandwidth (6 buses), input time in this case would
be of the order of 8 s.

III. IMPLEMENTATION AND TESTS

A. Design, Placement, and Routing

The AMchip03 has been logically designed using the VHDL
hardware description language, and has been mapped on a
standard-cell library using Synopsis tools for VLSI design. The
0.18- m CMOS process (with 1 poly and 6 metal (Al) layers),
available from the silicon foundry UMC, has been chosen. The
automatically synthesized pattern array has been then further
optimized manually, trying to reduce the logic complexity and
with an eye to regular placement and routing.

The CAM bank is the part of the project that occupies most of
the area so it is important to exploit as much as possible the in-
trinsic regularity of the array. The main goal at this stage is gate
density, since our speed goals (40–50 MHz clock frequency)
are easily obtained with the available silicon technology. Only
a manual study of the structure can guarantee this result. Once
an array structure reasonably close to optimal is obtained with a
few trial and error steps, the associated cell placement is coded
into a relatively simple Perl script. The remaining logic has been
handled by standard software tools. Synopsys Physical-Com-
piler was used for placement of all other processor modules and
Cadence First-Encounter for routing. The die size is approxi-
mately 9.8 9.8 mm . The chip core uses approximately 80%
of the available area. The chip has a total of 164 logical input
and output pads and is packaged in a standard 208-pin plastic
“flat-pack.” Fig. 2 shows the micrograph layout of the AM-
chip03.

B. Design Verification

We come to the common problem of chip design function-
ality verification against specification. This problem was sepa-
rated into two logical steps. First take advantage of the fact that

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 12, 2008 at 19:22 from IEEE Xplore. Restrictions apply.

ANNOVI et al.: FAST TRACK FINDING BASED ON CAMs 2431

Fig. 2. Micrograph of the AMchip03 device. Four manually optimized
columns of 1280 patterns each are visible. One on the left, one on the right
and two in the middle. The two columns of lower density logic correspond to
the interconnection and readout logic that was automatically placed. (Color
version available online at http://ieeexplore.ieee.org.)

standard-cell designs are described by detailed and reliable Ver-
ilog models to be used for simulation. Second compare device
simulation with appropriate reference test vectors that comply
with, and verify, functional specifications. In order to prepare
the reference test vectors, we independently developed a C-lan-
guage model of the AMchip03. We wrote a total of 200 Kbytes
of code, this coding work was done in parallel with chip design.
Two students performed this work in about six months. A set
of input test vectors was randomly generated, in order to load
random patterns and random input data. Another set is made of
manually defined test vectors used to test all the specific config-
urations.

Both the C and Verilog model have been extensively sim-
ulated with those test vectors prior to fabrication. Finally the
outputs of the two models have been compared and debugged
in order to understand and remove any discrepancies. At the
end of this process, we had a fully debugged design, a clarifi-
cation of all misinterpretations of the specifications as well as
a working device with the first prototype. Post-routing simu-
lations and static timing analysis shows a maximum operating
frequency marginally higher than 50 MHz in worst case condi-
tions.

C. Production and Test

Prototypes of the device were fabricated in a multiproject chip
(MPC). A pilot production run of 12 wafers (chips) with
dedicated masks was performed immediately after. The mea-
sured yield on the MPC has been disappointingly low % .
We got an additional 30% chips that were “almost good”: ev-
erything being as expected apart for a single bit in a single pat-
tern inside the memory bank. The failing bit was not in a partic-
ular position, but was randomly distributed all around the bank
area, suggesting the existence of defects randomly distributed.
The dedicated fabrication run, chosen for the production, had a
yield % marginally better than expected for our die size

% . The expected yield obtained with the pilot run sug-
gests that the parameters chosen for the MPC process are not
appropriate for high-density, manually optimized memories as

the pattern bank. The first pilot run was sufficient to produce the
number of chips necessary for the CDF upgrade (chips).

We have developed a test board with a zero insertion force
(ZIF) socket to test the processor before soldering it on the ap-
plication boards. The test board connects to a Pattern Generator
and Digital Analyzer. FIFOs are used to handle the large amount
of input data (6 hit buses, 18 bits for each bus). The prototype
standard cell chips have been extensively tested with the same
test vectors used to validate the design trough simulation. Soft-
ware to convert automatically the test vectors from the simula-
tion format to the test stand format environment has been de-
veloped. Chips selected by the test stand have been soldered on
boards and tested on the experiment, showing that the selection
performed in the single chip test stand is 100% efficient. Chips
have been tested up to a frequency of 40 MHz, the maximum
input frequency required by SVT. A higher frequency would
require a larger power without any real advantage because other
boards would be the bottleneck in the SVT pipeline.

The AMchip03 pinout is compatible with an FPGA chip, so
that extensive board tests have been prepared before receiving
our prototype. We have used a commercial low cost FPGA
family (Xilinx Spartan 0.35- m process) [8]. The FPGA-based
AMchip03 has been logically designed with the same VHDL
code that defines the real device. As expected from the discus-
sion above, the pattern count in the FPGA is drastically reduced
with respect to the full AMchip03 implementation (only 2
patterns, instead of 5120).

For SVT, 9U VME boards housing four mezzanines are used.
Each board houses up to 128 chips, corresponding to 640K pat-
terns [7], although only 64 chips are used in the currently avail-
able system and only 4000 patterns are stored in each chip. The
full system has 24 boards (that is, 1536 AMchip03 chips), han-
dling the 12 wedges of the detector. In conclusion the approved
SVT upgrade was planned and built aiming at 512 000 patterns
per wedge, even if the capacity of the two installed boards per
wedge is patterns. A further extension is possible in
the future, adding more chips on the boards and improving other
SVT boards [6].

The AMchip03 implements a Jtag interface. This interface
gives write and read access to internal configuration of the
AMchip which includes pattern memory, internal registers
and Boundary Scan logic. All initialization and book-keeping
operations are performed via the JTAG interface. The 128 AM
chips on a board are interconnected on separate daisy-chains of
4 devices each, to build a total of 32 individual daisy-chains.
The 32 separate chains are accessed in parallel by a VME
slave which interfaces to all Jtag control signals of the chains.
The VME 32-bit wide data transfer allows us to program the
32 chains in parallel, so the time needed to store all patterns
in the chips is a few seconds. Patterns are also checked using
the boundary scan. This operation takes a few minutes and is
repeated at each run start, since it is shorter than other CDF
initialization procedures executed in parallel. The bank is
downloaded only if it is found to be corrupted or if it has to
be changed because the beam spot has moved in the transverse
plane.

The measured currents, Icore and , drawn by the AM-
chip03 from, respectively, 1.8 and 3.3 V power supplies are

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 12, 2008 at 19:22 from IEEE Xplore. Restrictions apply.

2432 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 4, AUGUST 2006

TABLE I
POWER CONSUMPTION OF AMCHIP03

shown in Table I. Measurements have been done in worst-case
conditions when all input buses switch simultaneously.

D. Comparison With Other Technologies

It is interesting to compare the performances of our processor
with other possible approaches. Let us start with a comparison
with an FPGA-based implementation.

A serious problem related to FPGA is the package. Very pow-
erful chips come only with very high pin-count, that is large
packages that decreases the total number of chips we can put
on a single board. Packages of the right size for our application
correspond to small FPGAs. The board has been developed for
PQ208 packages [7] and the upgrade is really fast only if we can
avoid doing the board again. Moreover full pin-compatibility is
often ignored when a new powerful family becomes available.

The most critical resources for a CAM structure are storage
elements that can be accessed all in parallel. In a typical FPGA,
these storage elements can be easily implemented with random
flip-flops. A typical advanced FPGA family (for instance, Al-
tera Stratix 2 [9]) has between 12 000 and 140 000 flip-flops.
Each patterns requires of the order of 100 flip-flops, so between

and patterns could be squeezed inside one FPGA,
under the very optimistic assumption that 100% usage as well as
satisfactory speed can be obtained at the same time. Taking the
largest FPGA option as an example the overall chip inventory
(and the corresponding engineering problems) would increase
by a factor 3 to 4, and the overall system costs by an unbearable
factor of 30 to 40. The design effort would be probably reduced
by a small factor from the eight months needed for the develop-
ment of the AMchip03.

The use of distributed small RAMs contained inside the CLBs
can improve the FPGA pattern capacity, as shown in [5]. How-
ever the gain is dependent on the CLB architecture and the kind
of project is chosen. In that design [5], for example, the logic and
buses to read/write patterns was not necessary for a specific fea-
ture (disappeared in the following release) of the development
software available at that time. A careful, time-consuming job is
necessary to evaluate and choose the right FPGA, reducing the
main advantage the FPGA offers: a short project development
time.

At the other technological extreme, a full custom VLSI
approach (at least for the regular CAM array) might increase
density by a factor of approximately 4, while fabrication costs

would stay almost constant. On the other hand the design
process would be much longer in time, intensive logic simula-
tion, timing verification before prototyping would be difficult,
and re-targeting to a different VLSI technology would be
almost equivalent to a full re-design.

Finally, it is interesting to estimate the hardware complexity
of a farm of PCs trying to perform our pattern matching task in
software with comparable performance. Direct implementation
in software of the actual algorithm performed by the Amchip03
is obviously ruled out. In fact, measuring the timing of a logical
simulation of the 1 500 AMchip03 installed in CDF we find that
we would need roughly 100 000 Pentium 4 CPUs in order to
sustain the 25 kHz event rate.

More efficient algorithms are available however. Let us focus
first on just one layer of w bits (that is bits for CDF).
On average, if patterns (again a typical CDF
value for a single detector wedge) are recorded in the data-base,
one specific single layer hit will be shared by
different candidate patterns. We can arrange this information in
precomputed lists, indexed, for the given layer, by the hit. The
list includes all candidate patterns that share that hit.

One such list must be prepared for each of the L layers. For
each incoming hit the corresponding list has to be visited, to set
as “fired” the corresponding layer into all the candidate patterns
of the list. After all hits are received (approximately per
layer) we end up with an overall list of entries checked
by the algorithm. At this point the algorithm, must inspects the
L lists for matches that, in this case, are associated to the same
pattern being present in all L lists (or in a majority of them).
Efficient algorithms exists to perform the task, with a number
of memory accesses of the order of

(1)

This step must be performed L times, implying a number of
memory accesses of the order of

(2)

where K is a small integer .
Using CDF reference values, we end up with approximately

accesses. If we optimistically assume that all data is
available in a large second level cache (typical access time op-
timistically estimated at 2 ns) and just neglect any processing
overhead, we conclude that approximately 300 PCs could per-
form the task in parallel in order to stay within the allotted time
limits. A system able to handle all 12 wedges would therefore
include from 3000 to 4000 PCs.

IV. CONCLUSION

A track finding processor based on a CAM has been produced
for the SVT upgrade of the CDF experiment. This device im-
proves the size of the pattern bank by a factor over a pre-
vious version of the processor. The device is also faster: it was
designed with a target clock frequency of 50 MHz (although it
is currently operated in a 40 MHz system).

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 12, 2008 at 19:22 from IEEE Xplore. Restrictions apply.

ANNOVI et al.: FAST TRACK FINDING BASED ON CAMs 2433

The design uses a standard-cell based technology instru-
mental to keep the design time to about 8 months (plus 2 months
to fabricate the prototypes). Our design methodology makes
upgrades to new technologies or to different environments
straightforward and quick to implement.

We can extrapolate the future capacity of a new device based
on 130-90 nm technologies: we expect an improvement of at
least a factor 2–4 in pattern density. A good strategy is to use
FPGAs for system development, and to start migration to a pin
compatible standard-cell device only for system production
when the experiment is getting close to data taking. Clock
frequencies, that in the present application had very relaxed re-
quirements, could also be increased by large factors . This
might provide opportunities to use these devices in applications
with tighter time constraints, such as Level 1 trigger systems.

ACKNOWLEDGMENT

The authors would like to thank C. Das, P. Malisse, and D.
Lambricht of IMEC (Belgium) and G. D’Amelio of Microtest

(Italy) for their precious collaboration in all production and test
phases of the AMchip03.

REFERENCES

[1] M. Dell’Orso and L. Ristori, “VLSI structures for track finding,” Nucl.
Instrum. Methods, vol. A278, pp. 436–440, 1989.

[2] F. Abe, “The CDF detector: An overview,” Nucl. Instrum. Methods,
vol. A271, pp. 387–403, 1988, CDF Collaboration.

[3] S. Belforte, “SVT: An online silicon vertex tracker for the CDF up-
grade,” Nucl. Intsrum. Methods, vol. A409, pp. 658–661, 1998.

[4] R. Amendolia, “The AMchip: A full-custom MOS VLSI associative
memory for pattern recognition,” IEEE Trans. Nucl. Sci., vol. 39, pp.
795–797, 1992.

[5] A. Bardi, “A programmable associative memory for track finding,”
Nucl. Intsrum. Methods, vol. A413/2-3, pp. 367–373, 1998.

[6] J. Adelman et al., “First steps in the silicon vertex trigger upgrade at
CDF,” in Proc. 2005 IEEE Nucl. Sci. Symp. Conf. Rec., Oct. 23–29,
2005, vol. 1, pp. 603–607.

[7] A. Annovi, “The AM++ board for the silicon vertex tracker upgrade at
CDF,” in Nucl. Sci. Symp. Conf. Rec., 2005 IEEE, Oct. 23–29, 2005,
vol. 1, pp. 598–602.

[8] , [Online]. Available: http://www.xilinx.com
[9] Altera Corp., Stratix II Device Handbook (2004), [Online]. Available:

http://www.altera.co

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 12, 2008 at 19:22 from IEEE Xplore. Restrictions apply.

